[Proposed] df50_def다시

Author

김보람

Published

February 14, 2024

imports

import pandas as pd
import numpy as np
import sklearn
import pickle 
import time 
import datetime
import warnings
warnings.filterwarnings('ignore')
%run ../function_proposed_gcn.py
with open('../fraudTrain.pkl', 'rb') as file:
    fraudTrain = pickle.load(file)    
try_1(fraudTrain, 0.5, 1e7, 0.8)
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params theta gamma
0 GCN None 0.933067 0.919005 0.951155 0.934804 0.966693 True Proposed 0.5 9009 amt 0.498501 3003 0.504496 None 10000000.0 0.8
df_results = try_11(fraudTrain, 0.5, 1e7, 0.7)
df_results = try_11(fraudTrain, 0.5, 1e7, 0.72, prev_results=df_results)
df_results = try_11(fraudTrain, 0.5, 1e7, 0.74, prev_results=df_results)
df_results = try_11(fraudTrain, 0.5, 1e7, 0.76, prev_results=df_results)
df_results = try_11(fraudTrain, 0.5, 1e7, 0.78, prev_results=df_results)
df_results = try_11(fraudTrain, 0.5, 1e7, 0.8, prev_results=df_results)
df_results = try_11(fraudTrain, 0.5, 1e7, 0.82, prev_results=df_results)
df_results = try_11(fraudTrain, 0.5, 1e7, 0.84, prev_results=df_results)
df_results = try_11(fraudTrain, 0.5, 1e7, 0.86, prev_results=df_results)
df_results = try_11(fraudTrain, 0.5, 1e7, 0.88, prev_results=df_results)
df_results = try_11(fraudTrain, 0.5, 1e7, 0.9, prev_results=df_results)
df_results = try_11(fraudTrain, 0.5, 1e7, 0.92, prev_results=df_results)
df_results = try_11(fraudTrain, 0.5, 1e7, 0.94, prev_results=df_results)
df_results = try_11(fraudTrain, 0.5, 1e7, 0.96, prev_results=df_results)
ymdhms = datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S') 
df_results.to_csv(f'../results/{ymdhms}-proposed.csv',index=False)

df_results
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params theta gamma
0 GCN None 0.922411 0.891892 0.962227 0.925725 0.954604 True Proposed 0.5 9009 amt 0.499167 3003 0.502498 None 10000000.0 0.70
1 GCN None 0.918748 0.890909 0.958279 0.923367 0.957870 True Proposed 0.5 9009 amt 0.496392 3003 0.510823 None 10000000.0 0.72
2 GCN None 0.925075 0.894510 0.964096 0.928000 0.958778 True Proposed 0.5 9009 amt 0.499722 3003 0.500833 None 10000000.0 0.74
3 GCN None 0.938395 0.920382 0.960133 0.939837 0.966664 True Proposed 0.5 9009 amt 0.499611 3003 0.501166 None 10000000.0 0.76
4 GCN None 0.931735 0.907987 0.958839 0.932721 0.966264 True Proposed 0.5 9009 amt 0.502165 3003 0.493506 None 10000000.0 0.78
5 GCN None 0.932734 0.915601 0.953395 0.934116 0.964429 True Proposed 0.5 9009 amt 0.499944 3003 0.500167 None 10000000.0 0.80
6 GCN None 0.939727 0.914801 0.970957 0.942043 0.969211 True Proposed 0.5 9009 amt 0.498501 3003 0.504496 None 10000000.0 0.82
7 GCN None 0.947386 0.930142 0.966398 0.947924 0.973762 True Proposed 0.5 9009 amt 0.501499 3003 0.495504 None 10000000.0 0.84
8 GCN None 0.946054 0.931717 0.963696 0.947437 0.970296 True Proposed 0.5 9009 amt 0.498501 3003 0.504496 None 10000000.0 0.86
9 GCN None 0.950716 0.937139 0.966909 0.951792 0.975631 True Proposed 0.5 9009 amt 0.498945 3003 0.503164 None 10000000.0 0.88
10 GCN None 0.952381 0.939633 0.965610 0.952444 0.976409 True Proposed 0.5 9009 amt 0.502054 3003 0.493839 None 10000000.0 0.90
11 GCN None 0.958375 0.954045 0.964660 0.959323 0.978292 True Proposed 0.5 9009 amt 0.497058 3003 0.508825 None 10000000.0 0.92
12 GCN None 0.955045 0.953083 0.956288 0.954683 0.978829 True Proposed 0.5 9009 amt 0.501610 3003 0.495171 None 10000000.0 0.94
13 GCN None 0.966034 0.963887 0.968977 0.966425 0.985536 True Proposed 0.5 9009 amt 0.498501 3003 0.504496 None 10000000.0 0.96