import pandas as pd
import numpy as np
import sklearn
import pickle
import time
import datetime
import warnings
'ignore') warnings.filterwarnings(
imports
%run ../function_proposed_gcn.py
with open('../fraudTrain.pkl', 'rb') as file:
= pickle.load(file) fraudTrain
0.5, 1e7, 0.8) try_1(fraudTrain,
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.933067 | 0.919005 | 0.951155 | 0.934804 | 0.966693 | True | Proposed | 0.5 | 9009 | amt | 0.498501 | 3003 | 0.504496 | None | 10000000.0 | 0.8 |
= try_11(fraudTrain, 0.5, 1e7, 0.7)
df_results = try_11(fraudTrain, 0.5, 1e7, 0.72, prev_results=df_results)
df_results = try_11(fraudTrain, 0.5, 1e7, 0.74, prev_results=df_results)
df_results = try_11(fraudTrain, 0.5, 1e7, 0.76, prev_results=df_results)
df_results = try_11(fraudTrain, 0.5, 1e7, 0.78, prev_results=df_results)
df_results = try_11(fraudTrain, 0.5, 1e7, 0.8, prev_results=df_results)
df_results = try_11(fraudTrain, 0.5, 1e7, 0.82, prev_results=df_results)
df_results = try_11(fraudTrain, 0.5, 1e7, 0.84, prev_results=df_results)
df_results = try_11(fraudTrain, 0.5, 1e7, 0.86, prev_results=df_results)
df_results = try_11(fraudTrain, 0.5, 1e7, 0.88, prev_results=df_results)
df_results = try_11(fraudTrain, 0.5, 1e7, 0.9, prev_results=df_results)
df_results = try_11(fraudTrain, 0.5, 1e7, 0.92, prev_results=df_results)
df_results = try_11(fraudTrain, 0.5, 1e7, 0.94, prev_results=df_results)
df_results = try_11(fraudTrain, 0.5, 1e7, 0.96, prev_results=df_results)
df_results = datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'../results/{ymdhms}-proposed.csv',index=False)
df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.922411 | 0.891892 | 0.962227 | 0.925725 | 0.954604 | True | Proposed | 0.5 | 9009 | amt | 0.499167 | 3003 | 0.502498 | None | 10000000.0 | 0.70 |
1 | GCN | None | 0.918748 | 0.890909 | 0.958279 | 0.923367 | 0.957870 | True | Proposed | 0.5 | 9009 | amt | 0.496392 | 3003 | 0.510823 | None | 10000000.0 | 0.72 |
2 | GCN | None | 0.925075 | 0.894510 | 0.964096 | 0.928000 | 0.958778 | True | Proposed | 0.5 | 9009 | amt | 0.499722 | 3003 | 0.500833 | None | 10000000.0 | 0.74 |
3 | GCN | None | 0.938395 | 0.920382 | 0.960133 | 0.939837 | 0.966664 | True | Proposed | 0.5 | 9009 | amt | 0.499611 | 3003 | 0.501166 | None | 10000000.0 | 0.76 |
4 | GCN | None | 0.931735 | 0.907987 | 0.958839 | 0.932721 | 0.966264 | True | Proposed | 0.5 | 9009 | amt | 0.502165 | 3003 | 0.493506 | None | 10000000.0 | 0.78 |
5 | GCN | None | 0.932734 | 0.915601 | 0.953395 | 0.934116 | 0.964429 | True | Proposed | 0.5 | 9009 | amt | 0.499944 | 3003 | 0.500167 | None | 10000000.0 | 0.80 |
6 | GCN | None | 0.939727 | 0.914801 | 0.970957 | 0.942043 | 0.969211 | True | Proposed | 0.5 | 9009 | amt | 0.498501 | 3003 | 0.504496 | None | 10000000.0 | 0.82 |
7 | GCN | None | 0.947386 | 0.930142 | 0.966398 | 0.947924 | 0.973762 | True | Proposed | 0.5 | 9009 | amt | 0.501499 | 3003 | 0.495504 | None | 10000000.0 | 0.84 |
8 | GCN | None | 0.946054 | 0.931717 | 0.963696 | 0.947437 | 0.970296 | True | Proposed | 0.5 | 9009 | amt | 0.498501 | 3003 | 0.504496 | None | 10000000.0 | 0.86 |
9 | GCN | None | 0.950716 | 0.937139 | 0.966909 | 0.951792 | 0.975631 | True | Proposed | 0.5 | 9009 | amt | 0.498945 | 3003 | 0.503164 | None | 10000000.0 | 0.88 |
10 | GCN | None | 0.952381 | 0.939633 | 0.965610 | 0.952444 | 0.976409 | True | Proposed | 0.5 | 9009 | amt | 0.502054 | 3003 | 0.493839 | None | 10000000.0 | 0.90 |
11 | GCN | None | 0.958375 | 0.954045 | 0.964660 | 0.959323 | 0.978292 | True | Proposed | 0.5 | 9009 | amt | 0.497058 | 3003 | 0.508825 | None | 10000000.0 | 0.92 |
12 | GCN | None | 0.955045 | 0.953083 | 0.956288 | 0.954683 | 0.978829 | True | Proposed | 0.5 | 9009 | amt | 0.501610 | 3003 | 0.495171 | None | 10000000.0 | 0.94 |
13 | GCN | None | 0.966034 | 0.963887 | 0.968977 | 0.966425 | 0.985536 | True | Proposed | 0.5 | 9009 | amt | 0.498501 | 3003 | 0.504496 | None | 10000000.0 | 0.96 |